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1. Relating Confidence Intervals and Hypothesis Tests for Means and Parameter Estimates 
 

Assumptions satisfied Property of estimators ��� Why this is important 

MLR.1-MLR.4 �����	 
 �� OLS estimates are unbiased. 

MLR.1-MLR.5 

[MLR.5: �������� � � ��� 
 ��] 
("Homoskedasticity") 

������	 

��

������ � ����
 

The standard errors we get from 

Stata regressions are right. 

MLR.1-MLR.6 

[MLR.6: ���� �!� ���] ��� � ��
������	

���"#$�$� 
We can do hypothesis tests (t, F) 

for the parameter values and 

construct confidence intervals. 

 

We learned the first result a long time ago. The second doesn't give us a lot of insight, just that for this 

particular formula for the variance of the estimators to be right, we need the unobservables to have the same 

variance regardless of what the x'es are. 

 

The third result is what interests us for hypothesis testing. It says that if the unobservables follow a normal 

distribution (again, an assumption, we can't explicitly verify this), then the ��� 's follow a particular distribution 
too. 

 

Let's compare confidence intervals and test statistics between population means and regression parameters: 

 Confidence interval Test statistics 

Population mean %& 
 '�( � )�����(�	� �( * )�����(�	+ �( � ,
����(� ���"#$� 

Regression parameters %& 
 -��� � ) .������	/ � ��� * ) .������	/0 ��� � ��
������	

���"#$�$� 

 

As you see, they are almost the same. In fact, once you have the appropriate standard error, you follow the exact 

same procedures for constructing a confidence interval or hypothesis testing. 



2. Confidence Intervals and Hypothesis Tests for One Regression Parameter 

The steps for these will look very familiar. 

 

Example: 
Here are the results of a regression of Michigan State University students' cumulative GPAs on their ACT 

score, high school GPAs, gender, and whether or not they were engineering or business majors. 

 
      Source |       SS       df       MS              Number of obs =     141 

-------------+------------------------------           F(  5,   135) =    6.63 

       Model |  3.82623697     5  .765247395           Prob > F      =  0.0000 

    Residual |  15.5798625   135  .115406389           R-squared     =  0.1972 

-------------+------------------------------           Adj R-squared =  0.1674 

       Total |  19.4060994   140  .138614996           Root MSE      =  .33972 

 

------------------------------------------------------------------------------ 

      colGPA |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         ACT |   .0102472   .0111827     0.92   0.361    -.0118687    .0323631 

       hsGPA |   .4666345   .1003923     4.65   0.000     .2680895    .6651796 

    engineer |  -.2147078   .1686759    -1.27   0.205    -.5482967    .1188812 

    business |   .0603423   .0764355     0.79   0.431    -.0908236    .2115082 

        male |   .0043776    .061257     0.07   0.943    -.1167699    .1255251 

       _cons |    1.17904   .3535725     3.33   0.001     .4797823    1.878298 

------------------------------------------------------------------------------ 

 

Confidence interval for �123: 
We know %&45 
 -��678 � )45 .�����678	/ � ��678 * )45 .�����678	/0, and Stata gave us ��678 and �����678	. We 
just need )45: 
 

n = _____________  k = _____________  n-k-1 = _____________ )45 = ____________ 
 

So %&45 
 -����������������������9:; . �����������������/ �������������������������* �9:; . �������������/0 
 - ���������������������������������������������0  
 

Hypothesis test for �123 
 <: 
 

STEP 1. Define hypotheses: 

=>? �678 
 ! 
=�? �678 @ ! 

Under the null hypothesis, �678 is 0, so we assume this is true for now. If true, then A
�BCD$>
EF�A�BCD	

��"#$�$�. 
 

STEP 2. Compute the test statistic: 

Use the information from the Stata output: 

��678 � �678
�����678	


 ���������������������!� 
 

 

STEP 3. Get the significance level of the test: 

Here we'll choose the 5% significance level, meaning we'll wrongly reject a true => 5% of the time. We go to 
the t-table and find out what the corresponding critical value (c) is. It's about 1.98 for n-k-1 = 141-5-1 = 135. 

 

  



STEP 4. Reject the null hypothesis or fail to reject it: 

 

Our critical value, c, is 1.98. Our t-statistic was ___________. 

 

If our �"#$�$�� G �9:; then we reject the null hypothesis because our ��678 was so far away from the null 
hypothesis of 0. If �"#$�$�� H �9:; then we can't reject the null hypothesis because ��678 is close enough to the 
null hypothesis of 0 that we can't say it's wrong with enough confidence. 

 

Did we reject =>?  YES   NO 

 

STEP 5. Interpret: 

If reject: 

There is statistical evidence at the 5% significance level that, conditional upon high school GPA, gender, and 

type of major, ACT score affects college GPA. 

 

If fail to reject: 

There is no statistical evidence at the 5% significance level that, conditional upon high school GPA, gender, 

and type of major, ACT score affects college GPA. 

 

Note: here we tested for the �� being equal to zero. This is the hypothesis test for which Stata reports the t-

statistic and p-value, because it's the most common test for us to care about. But nothing stops us from doing 

tests for �� being equal to some other number besides zero. 

 

 

  



3. Hypothesis Testing for Multiple Parameters 
Sometimes we want to do hypothesis tests involving more than one of the �� 's from a regression. We can do this 
by performing an F-test. F-tests can be used for many kinds of hypotheses, some of them being pretty complex 

and interesting. So far, we've just talked about testing that multiple �� 's are equal to zero. 
 

If you know how to do a t-test for one ��, then you already know how to do most of an F-test. You'll still follow 
the five steps of hypothesis tests. Here are some key differences between t-tests and F-tests for regressions: 

 

t-test F-test 

Hypotheses are about one � Hypotheses are about one or more �'s 
Calculate the t-statistic; compare to critical t-value Calculate the F-statistic; compare to critical F-value 

Choose one-tailed or two-tailed test Do not choose tails – just reject if F > c 

Has direct parallels to a confidence interval No direct parallel to a confidence interval 

 

Even though the F-test can involve hypotheses about many parameters, an F-test isn't more complicated to 

perform than a t-test. 

 

Example: 

A reasonable person might think that, even after controlling for initial student ability, a student's major in 

college will affect his/her GPA. For example, engineering courses might be harder and result in lower grades 

than humanities or business courses. Rather than speculate, let's use data to test this (at MSU at least): 

 

Regression including dummy variables for majors (UNRESTRICTED): 
      Source |       SS       df       MS              Number of obs =     141 

-------------+------------------------------           F(  5,   135) =    6.63 

       Model |  3.82623697     5  .765247395           Prob > F      =  0.0000 
    Residual |  15.5798625   135  .115406389           R-squared     =  0.1972 

-------------+------------------------------           Adj R-squared =  0.1674 

       Total |  19.4060994   140  .138614996           Root MSE      =  .33972 

 

------------------------------------------------------------------------------ 

      colGPA |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         ACT |   .0102472   .0111827     0.92   0.361    -.0118687    .0323631 
       hsGPA |   .4666345   .1003923     4.65   0.000     .2680895    .6651796 
    engineer |  -.2147078   .1686759    -1.27   0.205    -.5482967    .1188812 

    business |   .0603423   .0764355     0.79   0.431    -.0908236    .2115082 

        male |   .0043776    .061257     0.07   0.943    -.1167699    .1255251 

       _cons |    1.17904   .3535725     3.33   0.001     .4797823    1.878298 

------------------------------------------------------------------------------ 

 

 

Regression excluding dummy variables for majors, i.e. restricting �I#JK#IIL 
 !� �MNOK#IOO 
 ! 
(RESTRICTED): 
      Source |       SS       df       MS              Number of obs =     141 

-------------+------------------------------           F(  3,   137) =    9.79 

       Model |  3.42521974     3  1.14173991           Prob > F      =  0.0000 
    Residual |  15.9808797   137  .116648757           R-squared     =  0.1765 

-------------+------------------------------           Adj R-squared =  0.1585 

       Total |  19.4060994   140  .138614996           Root MSE      =  .34154 

 

------------------------------------------------------------------------------ 

      colGPA |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         ACT |   .0097797   .0112388     0.87   0.386    -.0124442    .0320036 

       hsGPA |   .4500655   .1005145     4.48   0.000      .251305     .648826 
        male |  -.0070857   .0611797    -0.12   0.908    -.1280643    .1138929 

       _cons |   1.293037   .3469184     3.73   0.000     .6070302    1.979045 

------------------------------------------------------------------------------ 



 

 

STEP 1. Define hypotheses: 

=>? �I#JK#IIL 
 !�PQR��MNOK#IOO 
 ! 
=�? �I#JK#IIL @ !�S���MNOK#IOO @ ! 

where "OR" can mean that one or both of the parameters is non-zero. 

 

STEP 2. Compute the test statistic: 

We can compute the F-statistic either using the residual sum of squares (RSS) or the ��. Both give the same F-
statistic but most people prefer to work with �� as it is a small number to put into the calculator. 
 

METHOD 1: RSS. 

TU�#$�$� 

����LIOVLKWVIX � ���N#LIOVLKWVIX�YZ
���N#LIOVLKWVIXY�[ � \ � ��

 

where: q is the number of restrictions being imposed (here, there are two: �I#JK#IIL 
 ! and �MNOK#IOO 
 !); 
 n is the number of observations (here, 141); 

 k is the number of explanatory variables in the unrestricted regression (here, 5). 

  

T���]�$5$� 

��^9:; � �^9^;�Y_
�^9^;Y��`� � ^ � �� 
 aaaaaaaaaaaaaaa 

 

 

 

METHOD 2: ��. 
TU�#$�$� 


��N#LIOVLKWVIX� � �LIOVLKWVIX� �YZ
�� � �N#LIOVLKWVIX� �Y�[ � \ � �� 

 

T���]�$5$� 

�9�:b_ � 9�bc^�Y_

�� � 9�:b_�Y��`� � ^ � �� 
 aaaaaaaaaaaaaa 
 

Notice that the order of the unrestricted and restricted terms in the numerator flipped between the methods. 

When in doubt, check the formula. You'll know you were wrong if you get a negative F-statistic. 

 

STEP 3. Get the significance level of the test: 

Here we'll choose the 10% significance level, meaning we'll wrongly reject a true => 10% of the time. We go 
to the F-tables and find out what the corresponding critical value (c) is when we have 2 degrees of freedom in 

the numerator (q) and 135 degrees of freedom in the denominator (n – k – 1). It's about 2.35. 

 

Note on the F-tables: there is one table for each significance level. The rows and columns correspond to the 

degrees of freedom in the numerator and denominator (q and n – k – 1, respectively). 

 

STEP 4. Reject the null hypothesis or fail to reject it: 

 

Our critical value, c, is 2.35. Our F-statistic was ___________. 

 

If our TU�#$�$� G _9d^ then we reject the null hypothesis because our �� 's were collectively too far away from 
the null hypothesis of 0. If TU�#$�$� H _9d^ then we can't reject the null hypothesis because our �� 's are close 
enough to the null hypothesis of 0 that we can't say the null is wrong with enough confidence. 

 

Did we reject =>?  YES   NO 



 

 

STEP 5. Interpret: 

If reject: 

There is statistical evidence at the 10% significance level that, conditional upon high school GPA, gender, and 

ACT score, college major affects college GPA. 

 

If fail to reject: 

There is no statistical evidence at the 10% significance level that, conditional upon high school GPA, gender, 

and ACT score, college major affects college GPA. 

 

 

 

FYI: Here is the distribution of the F-statistic with 2 and 135 degrees of freedom: 
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